Deep Learning Knot Theory
Arik Wilbert

Over the last decade, we have seen dramatic breakthroughs in what machine learning can do for us.
Tasks that once seemed impossible for a computer to perform are now possible. Prominent examples
of such tasks include image or speech recognition. In this project, we propose to use deep learning (a
part of machine learning) to tackle difficult problems in pure mathematics, specifically knot theory.
More precisely, the proposed project consists of three parts (see Subprojects 1, 2, and 3 below). The
first two parts consist of training an artificial neural network to predict two important properties of
knots. Once parts 1 and 2 are completed, the results will be applied to tackling an important open
problem in knot theory; the question whether the Jones polynomial detects the unknot.

The applicant has a background in pure mathematics (algebra, geometry, topology) focusing on knot
theory. We request $5,000 summer salary, so the applicant has the resources to spend the summer on
expanding his knowledge on state-of-the art methods in deep learning, gather preliminary data (i.e.,
create a database of knot diagrams), train the neural networks, and devise follow-up projects that
are suitable for student participation. Note that the applicant has already started building a machine
learning community at the University of South Alabama by participating in an informal seminar that
was organized by faculty and students in the Department of Mathematics and Statistics in Spring
2022.

1. DESCRIPTION OF THE PROJECT

1.1. Machine Learning. In order to understand the basic idea behind machine learning, take a look
at the left picture in Figure [1| below.

FIGURE 1. A jaguar (left picture) and a close-up of its fur (right picture).

It took the reader only a fraction of a second to determine that this picture shows the sculpture of a
waving jaguar wearing a football uniform. If we zoom in on the fur of the jaguar (see the picture on
the right in Figure, we realize that the picture of the jaguar is in fact made up of thousands of little
colored squares. Isn’t it remarkable how fast the human brain can process this information and decide
that this grid consisting of thousands of colored squares assembles to depict a jaguar?

The part of our brain that makes us recognize the picture is the visual cortex. The visual cortex
consists of millions of neurons. Modeling neural networks is the key idea behind what is called “deep
learning”. In order to explain this in more detail, the reader is referred to Figure [2] below which
contains an example of a model of a neural network.
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FIGURE 2. A model of a neural network.

The black dots represent the neurons. Each neuron can be thought of as a unit with several inputs
and outputs connected to other neurons. In reality, neurons “fire” by emitting a charge along their
axon. In our model, incoming and outgoing charges are encoded as real numbers. The neural network
depicted above takes in five real numbers (as indicated by the five horizontal arrows on the left) and
spits out two real numbers. Mathematically speaking, the neural network in the picture is a function

f:R5 — R2.

For a more concrete example, consider the task of recognizing handwritten digits. In this scenario,
we would like to feed the model a picture of a digit. Just like the picture of the jaguar, any such
picture consists of pixels (colored squares). A pixel is determined by a grayscale value between 0 and
255. Assuming the picture consists of 784 pixels, the data we can feed the computer model is a matrix

(rectangular grid) of 784 numbers between 0 and 255.
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FIGURE 3. A picture of a digit encoded in a pixel matrix.
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In this context, the the neural network’s job is to produce ten real numbers which we interpret as
a probability distribution on {0,1,...,9}. In other words, the neural network tells us with what
probability it thinks that the handwritten number is a 0,1,...,9, respectively.

Put into a more mathematical framework, the goal is to learn a certain function f: R™* — R10
which takes in a pixel matrix and then outputs the associated probability distribution. In order to
achieve this goal we have to “train” the neural network. This process boils down to providing the
model with the correct answers for a large amount of input data. Based on this, the neural network
then approximates the function f.

1.2. Knot Theory. In order to apply machine learning in knot theory (a subbranch of a mathematical
discipline called topology), we first need to understand what a mathematician means by a “knot”. In
order to create a knot, take a piece of string or rope, tie a knot in it, and then glue the ends together.
Note that joining the ends of the rope is what differentiates a “mathematical” knot from a knot one
would usually encounter in everyday life.
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FIGURE 4. Three examples of knots.

An easy but important example of a knot is the unknot. The unknot can be drawn with no crossings,
and is also called a trivial knot. It is the simplest of all knots (see the leftmost knot in Figure [4]).

The fundamental problem of knot theory is to determine whether two given knots can be rearranged
(without cutting) to be exactly alike. A special case of this problem is the following question. Given
a knot, is it the unknot? Take for example the knot in Figure 5] below.

FIGURE 5. A tangled up unknot.



Is it possible to untangle this knot so that it looks like the unknot? The answer is in fact yes. But the
human brain struggles to make such a decision within a short amount of time.

Subproject 1. Train a neural network to decide if the picture of a knot represents the unknot.

How can one decide if two given knots are different? Note that this is a difficult task. Being unable
to transform one knot into the other does not prove that it is impossible. Maybe we are just not clever
enough and need to try harder. In order to solve this problem, mathematicians have come up with
ways to assign so-called “invariants” to knots. One of these invariants is the famous Jones polynomial.
This polynomial was invented by Vaughan Jones in 1984. Jones later received the Fields Medal (the
mathematician’s analog of the Nobel prize) for his groundbreaking discovery.

Recall that a polynomial is simply a formal expression of the form —X =2 + 1 — 2X + 5X3. It is
a finite sum of powers of X (note that we also allow negative powers!), where each power of X is
additionally allowed to have a coefficient (a real number) in front of it. The Jones polynomial is a way
of assigning such a polynomial to a knot. For example, the unknot gets assigned the polynomial 1,
the second knot in Figure [4 gets assigned the polynomial —X % + X3 4 X! and the third knot in
Figure [4| has Jones polynomial X=2 — X~! 4+ 1 — X + X2. There is a simple rule (which can easily
be taught to high school students) to calculate the Jones polynomial of a knot. To keep this proposal
nontechnical, we omit to explain how it works exactly.

What makes the Jones polynomial so useful is the following crucial property. If one draws two
different pictures of the same knot, and then uses the algorithm to compute the respective Jones
polynomials, one ends up with the same answer. For example, if one were to use the algorithm to
compute the Jones polynomial for the knot in Figure 5} one would end up getting 1, since it can in fact
be untangled to produce the unknot (which has Jones polynomial 1). The upshot of this construction
is the following. If you have two complicated pictures of a knot and the respective Jones polynomials
turn out to be different, then the two knots must in fact be different and we cannot transform one into
the other.

The computational complexity of the usual algorithm for computing the Jones polynomial depends
exponentially on the number of crossings of the knot. Thus, it is not feasible to calculate the Jones
polynomial for knots with many crossings using the classical algorithms. This motivates to try a new
machine learning approach to the problem of computing it.

Subproject 2. Train a neural network to produce the Jones polynomial given the picture of a knot.

2. IMPORTANCE OF THE PROJECT

There is an ongoing discussion if Al will eventually replace human beings. The author of this
proposal takes the standpoint that machine learning can serve as a valuable tool for fundamental
research in the 21st century. But it will not render the human researcher superfluous. The point
of using machine learning in mathematical research is not to replace the mathematician. Instead,
it should be thought of as a modern tool similar to an undergraduate who thinks of his calculator
as a valuable tool in solving calculus problems. More specifically, we believe that machine learning
will be useful in generating and verifying conjectures. However, note that it will still be up to the
mathematician to then prove these conjectures.

Based on the general considerations in the previous paragraph, we propose to use deep learning to
specifically study the following open question in knot theory.

Open Question. Does the Jones polynomial detect the unknot?

Recall that if two knot diagrams have different Jones polynomials, then the knots must be different.
How about the converse? Suppose you have a complicated picture of a knot and its Jones polynomial
tuns out to be 1 (the Jones polynomial of the unknot). Does this imply that the knot can be untangled?
This is what we mean when we ask if the Jones polynomial “detects the unknot”. It is arguably one of
the most important unanswered questions about the Jones polynomial. There has been little progress
towards answering it since the discovery of the polynomial in the 80’s. This is why we propose to use
machine learning as a new tool to tackle it.



Subproject 3. Use the results from Subprojects 1 and 2 to prove that the Jones polynomial detects
the unknot or come up with a counterexample.

Upon the successful completion of Subprojects 1 and 2, we can use the resulting neural networks
to compute the Jones for a large number of complicated knots (Subproject 2) and at the same time
decide if the knot is the unknot (Subproject 1). This will provide an efficient way to search for
counterexamples to the conjecture that the Jones polynomial detects the unknot.

3. ANTICIPATED OUTCOMES

The applicant is confident that this is a feasible project which can be completed over the summer.
The most time-consuming part will be the creation of a data base of knot diagrams to be used in
training the neural networks for Subprojects 1 and 2. The actual training should only take a couple of
days. The applicant intends to use existing software libraries (such as TensorFlow) to create and train
the neural networks. Depending on the size of the data, the applicant will resort to using the Alabama
Supercomputer Center as an additional resource for training. Subproject 3 is more open-ended and
leaves potential for future research. While the proposed project is self-contained, it could easily be
expanded into a larger long-term project.

We expect the outcomes of the proposed research to lead to results publishable in peer-reviewed
journals. As a consequence, this will also make the applicant more competitive when applying for
external grants in the future.

If expanded into a long-term project, this would positively impact the University of South Alabama
in at least two ways.

(1) The applicant sees potential for future collaboration on related projects with other departments.
Knot theory has many applications in diverse fields such as biology (DNA-protein interaction,
topoisomerase enzymes), medicine (mechanisms of antibiotic resistance), chemistry (molecular
chirality), and physics (quantum entanglement, quantum computing). As such, this project
could provide a basis for future interdisciplinary research beyond the College of Arts and
Sciences including the School of Computing, the School of Engineering, and the College of
Medicine.

(2) The successful completion of the proposed project provides a basis for student research on
related projects in the future. Note that once a training set of knot diagrams has been created,
this training set can be used to train other neural networks to investigate other questions about
knots. We believe that research projects on the interface of knot theory and deep learning
are particularly well-suited for student involvement. Note that knot theory is a branch of
mathematics that does not require a sophisticated, abstract machinery to be understood. As
such, it is widely accessible to undergraduate students. Students participating in this project
will not only be able to discover deep facts about pure mathematics, but they will also gain
valuable job skills that will prepare them to excel in their careers in the data-driven 21st
century. This would very well align with the LevelUP initiative that will shape the University
of South Alabama in the coming years.
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